a) Xét ΔAKB và ΔAKC có:
AB = AC (gt)
ABK = ACK (ΔABC cân)
KB = KC (K: trđ BC)
=> ΔAKB = ΔAKC (c.g.c)
=> BKA = CKA (2 góc tương ứng)
Mà BKA + CKA = 180o (kề bù)
=> BKA = CKA = 180o : 2 = 90o
=> AK \(\perp\) BC
b) Ta có:
AK \(\perp\) BC
CE \(\perp\) BC
=> AK // EC
c) Dễ dàng c/m được KAC = KCA (= 45o)
Mà KAC = ACE (AK // CE)
=> BCA = ECA
Xét ΔCAB và ΔCAE có:
CAB = CAE (= 90o)
AC: chung
BCA = ECA (cmt)
=> ΔCAB = ΔCAE (cgv-gn)
=> BC = EC (2 cạnh tương ứng)