a) Ta có : \(AB^2+AC^2=BC^2\) (Định lý Py-ta-go)
Nên : \(AC^2=BC^2-AB^2\)
Mà : AB = 3cm, BC = 5cm
Suy ra : \(AC^2=5^2-3^2=25-9=16\)
Vậy : \(AC=\sqrt{16}=4\) ( \(-\sqrt{16}\) loại)
a) Ta có : \(AB^2+AC^2=BC^2\) (Định lý Py-ta-go)
Nên : \(AC^2=BC^2-AB^2\)
Mà : AB = 3cm, BC = 5cm
Suy ra : \(AC^2=5^2-3^2=25-9=16\)
Vậy : \(AC=\sqrt{16}=4\) ( \(-\sqrt{16}\) loại)
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm
a) Tính AC
b) Kẻ đường cao AH của tam giác ABC, trên tia đối của tia HA lấy điểm D sao cho HA=HD. Chứng minh tam giác ACD cân
c) Từ D kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh AI vuông góc DC.
CÁC BẠN GIÚP MÌNH NHA, CẢM ƠN CÁC BẠN NHIỀU NHIỀU
Cho tam giác ABC nhọn. Đường cao AH. Qua H kẻ Hx vuông góc với AB tại I. Trên tia đối của IH lấy điểm D sao cho IH = ID. Từ H kẻ HK vuông góc HC tại K. Trên tia đối của tia AH lấy điểm E sao cho KH = KE. a) Chứng minh góc DAE = 2 lần góc BAC. b) Nối DE cắt AB và AC theo thứ tự tại M và N. c) Chứng minh ba đường thẳng AH, CM, BH đồng quy tại 1 điểm.
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh DABC đồng dạng với DHBA, từ đó suy ra ;
b. Tia phân giác của góc ABC cắt AH tại I. Chứng minh rằng ;
c. Tia phân giác của góc HAC cắt BC tại K. Chứng minh song song với .
Cho tam giác ABC vuông tại A (AB<AC) Tia phân giác của góc ABC cắt cạnh AC tại D. Từ D kẻ DH vuông góc với AC (H thuộc AC).
A/ Chứng minh: tam giác ABD= tam giác HBD.
B/ Đường thẳng HD cắt đường thẳng BA tại K. Chứng minh: Tam giác BKC.
C/ Gọi M là trung điểm của KC. Chứng minh 3 điểm B, D, M thẳng hàng.
Cho tam giác ABC vuông tại B có góc A bằng 600. Vẽ đường cao BH. Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ BM vuông góc với DC tại M.
a) Chứng minh tam giác ABD cân.
b) Chứng minh CB = CD.
c) Gọi I là giao điểm của BM và CH. Chứng minh DI vuông góc với BC.
d) Chứng minh CI = 2IH.
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB