Cho tam giác ABC vuông tại B. Vẽ trung tuyến AM. Trên tia đối của MA lấy điểm E sao cho ME= MA. CHứng minh rằng a) tam giác AMB= EMC b) AC>CE c) góc BAM > góc MAC
Cho tam giác ABC , Mlà trung điểm của BC , Trên tia đổi của tia MA lấy điểm K sao cho MK = MA a ) Chứng minh tam giác ABC = tam giác KMB b) Chứng minh AC//BK c ) từ M kẻ MH vuông góc với AC ( H thuộc AC ) , kẻ MI vuông góc với BK ( I thuộc BK) . Chứng minh MH = MI d) Trên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB , trên ta đó lấy điểm D sao cho A = AB . Trên nửa mặt phẳng ko chứa tia B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC , Chứng minh rằng AM = DE/2
Cho tam giác ABC cân tại A, AM là đường trung tuyến
a, Chứng minh rằng AM vuông góc BC
b, Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng tam giác BMD bằng tam giác CMA. Từ đó suy ra BD = AC
c, tính số đo các cạnh tam giác MBD biết AM = 4 cm, BC = 6 cm
d, Trên tia đối của tia CB lấy tia lấy điểm E sao cho CB = CE. Chứng minh rằng C là trọng tâm của tam giác ABE
Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Bài 5. Cho tam giác ABC vuông tại A( AB > AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA
a) Cho AB= 8cm, BC= 10cm. Tính AC?
b) Chứng minh DAMB = D DMC, từ đó suy ra CD ^ AC
c) Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: DACE cân
d)Chứng minh BD = CE.
Cho tam giác ABC có AB = AC. M là trung điểm của BC. Chứng minh:
a. Tam giác ABM = tam giác ACM, AM vuông góc với BC
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh: AB//CD
c. Cho ME vuông góc với AB (E thuộc AB), MF vuông góc CD (F thuộc CD). Chứng minh: M là trung điểm của EF.
Cho tam giác ABC vuông tại A có góc B = 30 độ và M là trưng điểm của cạnh BC . Trên tia đối của tia MA lấy điểm D sao cho MA=MD .
a, vẽ hình, ghi giả thiết kết luận cho bài toán
b, tính số đo góc C
c, chứng minh △MAB = △MDC
d, chứng minh AB//CD và AC⊥CD
e, chứng minh BC=2AM
Cho tam giác ABC vuông tại A, trung điểm M của cạnh BC. Trên tia đối của
tia MA, lấy điểm D sao cho MA = MD.
a) Chứng minh tam giác MAB= tam giác MDC.
b) Chứng minh AB//CD.
c) Lấy E là trung điểm AC, kẻ MF vuông góc BD , chứng ming ba điểm E, M, F thẳng hàng.