a, Xét ΔABC vuông tại A có :
BC2 = AB2 + AC2 ( Định lí Pytago)
=> BC2 = 52 + 122
=> BC2 = 169
=> BC = 13 (cm)
a, Xét ΔABC vuông tại A có :
BC2 = AB2 + AC2 ( Định lí Pytago)
=> BC2 = 52 + 122
=> BC2 = 169
=> BC = 13 (cm)
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.
cho tam giác ABC có AB =Ac ,AD là tia phan giác của góc BAC 'D e BC
a. cm tam giác ADB = tam giác ADC
b. trên AB và AC lần lượt lấy 2 điểm M,N sao ch AM=AN cm AD vuông góc vs MN
c. Gọi O là trung điểm của BM . trên tia đối của OD lấy điểm P sao cho OD=OP cm p'm'n thẳng hàng
Cho tam giác ABC.gọi M là trung điểm AC.trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) chứng minh rằng tam giác ABM=tam giác CMD.So sánh AD và BC
b)chứng minh:tam giác ABM=tam giác CMD:chứng minh AB//CD
c) Gọi H và K lần lượt là trung điểm của AD và BC.chứng minh H,M,K thẳng hàng
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)