Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH ( H ∈BC ) . Trên tia HC lấy điểm D sao cho HD = HA . Đường vuông góc với BC tại D cắt AC tại E, cắt AB tại F . Gọi M là trung điểm của BE, AM cắt BC tại G
a) Chứng minh rằng 2 tam giác DEC và AEF đồng dạng
b) Cho biêt AB = 3cm, AC = 4cm. Tính diện tích tam giác ABD, Tính HG
c) chứng minh rằng: \(\dfrac{GB}{GC} = \dfrac{HD}{HC}\)