a: BC=BH+CH
=3+9
=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3\cdot9=27\)
=>\(AH=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{3\cdot12}=6\left(cm\right)\\AC=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b: \(tan^2C+cot^2C\)
\(=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{AB}{AC}\right)^2\)
\(=\dfrac{AC^2}{AB^2}+\dfrac{AB^2}{AC^2}\)
\(=\dfrac{HC\cdot BC}{HB\cdot BC}+\dfrac{HB\cdot BC}{HC\cdot CB}\)
\(=\dfrac{HC}{HB}+\dfrac{HB}{HC}\)