a: Xét tứ giác AEDF có
\(\widehat{FAE}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
a: Xét tứ giác AEDF có
\(\widehat{FAE}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
cho tam giác ABC vuông tại A, D là trung điểm BC. từ D kẻ DE vuông góc AB(E thuộc AB), kẻ DF vuông góc AC(F thuộc AC)
a, chứng minh tứ giác AEDF là HCN
b, gọi I là điểm đối xứng với D qua F. chứng minh tứ giác ABDI là hình bình hành
c, kẻ AH vuông góc BC(H thuộc BC). chứng minh: AD2=EH2+HF2
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC vuông tại A (AB bé thua AC),có M là trung điểm của cạnh BC ,vẽ MD vuông gốc với AB tại D ,ME vuông gốc với AC tại E
a)cm tứ giác DMAE là hình chữ nhật
b)gọi N là điểm đối xứng của M qua E.Chứng minh tứ giác AMCN là hình thoi
c) biết AB =6cm ,BC=10cm tính diện tích tam giác ABC
d) đường thẳng BE cắt CN tại K chứng minh rằng CK/CN =2/3
Bài 3: Cho tam giác ABC vuông tại A (AB<AC) có M và E lần lượt là trung điểm của
BC và AC, về MD vuông góc với AB tại a) Chứng minh: MẸ // AB và tứ giác ADME là hình chữ nhật.
b) Gọi K là điểm đối xứng với M qua E. Tứ giác AMCK là hình gì? Chứng minh. c) Gọi O là giao điểm của AM và DE, H là hình chiếu của M trên AK. CM:HD\perp HE
Cho ΔABC nhọn, đường cao AD và BE cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F.
a. Tứ giác AFBD là hình gì? Vì sao?
b. Gọi K là giao của AB và DF, I là trung điểm HC. Chứng minh E và D đối xứng với nhau qua KI
cho tam giác ABC vuông tại A đường cao AH kẻ HD vuông góc với AB tại D kẻ HE vuông góc với AC tại E a chứng minh tứ giác ADHE là hình chữ nhật b chứng minh AH=DE? c tam giác ABC cần có điều kiện gì thì tứ giác ADHE là hình vuông
Bài 4: Cho ∆ABC vuông tại A, AM là trung tuyến. I là trung điểm AC a) Chứng minh tứ giác ABMI là hình thang vuông.
b) D đối xứng M qua I. Chứng minh tứ giác ADCM là hình thoi
c) Kẻ MHL AB, IH cắt AM tại O, CO cắt IM tại K. Chứng minh: DK = 2KM
Cho △ABC vuông tại A, đường phân giác của góc A cắt BC tại D. Gọi I là trung điểm của DC và E là điểm đối xứng với A qua I.
a) Chứng minh tứ giác ADEC là hình bình hành.
b) Từ D kẻ DM vuông góc với AB (M ∈ AB), kẻ DN vuông góc với AC (N ∈ AC). Chứng minh tứ giác AMDN là hình vuông.
c) Chứng minh ba điểm M,D,E thằng hàng