a) Xét ΔABC có AB<AC(6cm<8cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
nên \(\widehat{ABC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
BA=BH(gt)
Do đó: ΔABD=ΔHBD(cạnh huyền-cạnh góc vuông)
nên \(\widehat{ABD}=\widehat{HBD}\)(hai góc tương ứng)
mà tia BD nằm giữa hai tia BA,BH
nên BD là tia phân giác của \(\widehat{ABH}\)
hay BD là tia phân giác của \(\widehat{ABC}\)(đpcm)