Ta có: BC2 = AB2 + AC2
= 122 + 162 = 400
\(\Rightarrow\)BC = \(\sqrt{400}\) = 20 (cm)
Δ ABC vuông có đường cao AH:
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\)
\(\Rightarrow CH=20-7,2=12,8\left(cm\right)\)
Ta có: AD là phân giác
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{\left(BD+CD\right)}{CD}=\dfrac{\left(AB+AC\right)}{AC}\)
\(\Rightarrow\dfrac{20}{CD}=\dfrac{28}{16}\)
\(\Rightarrow CD=\dfrac{80}{7}\)
\(\Rightarrow HD=CH-CD=12,8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)
tự vẽ hình nha!
Xét △ABC:^A=90*(gt)=>BC2=AB2+AC2(đl pi-ta-go)
t/số:BC2=122+162=400=>BC=20(cm)
Lại có:△ABC vuông tại A,đường cao AH
=>AB2=BH.BC(htl)
=>122=BH.20=>BH=7.2 (cm)
=>CH=20-7.2=12,8(cm)
Ta có AD là phân giác=>\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=>\dfrac{BD+CD}{CD}=\dfrac{AB+AC}{AC}=>\dfrac{20}{CD}=\dfrac{28}{16}.=>CD=\dfrac{80}{7}=>HD=CH-CD=\dfrac{48}{35}\)