\(OA=OB=OC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot12=6\left(cm\right)\)
\(OA=OB=OC=12.BC=12.12=6\left(cm\right)\)
OA=OB=OC=\(\dfrac{1}{2}\)⋅BC=\(\dfrac{1}{2}\)⋅12=6(cm)
\(OA=OB=OC=\dfrac{1}{2}.BC=\dfrac{1}{2}.12=6\left(cm\right)\)
\(OA=OB=OC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot12=6\left(cm\right)\)
\(OA=OB=OC=12.BC=12.12=6\left(cm\right)\)
OA=OB=OC=\(\dfrac{1}{2}\)⋅BC=\(\dfrac{1}{2}\)⋅12=6(cm)
\(OA=OB=OC=\dfrac{1}{2}.BC=\dfrac{1}{2}.12=6\left(cm\right)\)
Cho tam giác ABC cân tại A có AB=9cm, AC=12cm,BC=15cm, có I là tâm đường tròn nội tiếp tam giác đó. Khi đó bán kính r của đường tròn (I) là?
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.
Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN
Cho tam giác ABC có AB=AC=4a;BC=2a .Bán kính đường tròn ngoại tiếp tam giác ABC bằng
Cho tam giác ABC vuông tại A với AB < AC. Giả sử tồn tại hai đường tròn (P) và (Q) có bán kính bằng nhau và tiếp xúc với nhau sao cho đường tròn (P) tiếp xúc với cạnh AB và cạnh BC, đường tròn (Q) tiếp xúc với cạnh AC và cạnh BC . Gọi M, N thứ tự là tiếp điểm của BC với (P) và (Q). Chứng minh rằng tia phân giác của góc BAC đi qua trung điểm của MN.
Cho m hỏi bài này với ạ
cho tam giác ABC nội tiếp đường tròn tâm (o), đường kính AB=2R trên cạnh BC lấy điểm M ( M khác B và C) đường thẳng AM cắt đường tròn O tại D, đường thẳng BD cắt AC tại E đường tròn tâm I ngoại tiếp tam giác MDB cắt đường kính ad tại điểm thứ hai là N
1) chứng minh tứ giác CEDM nội tiếp đường tròn và 3 điểm E,M,N thẳng hàng
2)cho đoạn thẳng CN cắt đường tròn(i) ở F .cmr : DF//AE
Cho tam giác ABC vuông tại A có AB > AC. Điểm M thuộc cạnh AB. Đường tròn tâm O đường kính BM cắt BC tại N
a, AMNC là tứ giác nội tiếp
b, \(\dfrac{BM}{BN}=\dfrac{MC}{NA}\)
c, Đường tròn ngoại tiếp tam giác AON cắt CM tại P. chứng minh rằng đoạn thẳng OP có độ dài không đổi khi M di động trên cạnh AB
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
cho tam giác nhọn ABC đường tròn tâm o đường kính BC cắt AB,AC lần lượt tại D,E . hai đường thẳng BD và CE cắt nhau tại H . a,Chứng minh ADHE là tứ giác nội tiếp đường tròn
b,Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giacs ADH
c,Cho góc BAC = 60 độ . chứng minh Sabc = Sade
(học sinh giải thích vì sao chọn đáp án đó)
câu 15 : Cho tam giác ABC có AB = 3cm, AC = 4cm , BC = 5cm. Bán kính đường tròn ngoại tiếp tam giác ABC là:
A. 5 cm
B. 2,5 cm
C. 10 cm
D. 3cm