Đặt \(AB=a;AC=b;BC=a\) . Ta có : \(p=\dfrac{a+b+c}{2}=18\)
S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=54\) \(=pr=18r\Rightarrow r=3\) (cm)
Đặt \(AB=a;AC=b;BC=a\) . Ta có : \(p=\dfrac{a+b+c}{2}=18\)
S = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=54\) \(=pr=18r\Rightarrow r=3\) (cm)
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.
Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN
Cho tam giác ABC vuông tại A có AC>AB. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm của đường tròn nội tiếp với các cạnh AB,BC,CA lần lượt tại M,N,P.
a) Chứng minh tứ giác AMIP là hình vuông
b) Đường thẳng AI cắt PN tại D. Chứng minh 5 điểm M,B,N,O,I nằm trên một đường tròn
cho tam giác ABC nội tiếp đường tròn tâm (o), đường kính AB=2R trên cạnh BC lấy điểm M ( M khác B và C) đường thẳng AM cắt đường tròn O tại D, đường thẳng BD cắt AC tại E đường tròn tâm I ngoại tiếp tam giác MDB cắt đường kính ad tại điểm thứ hai là N
1) chứng minh tứ giác CEDM nội tiếp đường tròn và 3 điểm E,M,N thẳng hàng
2)cho đoạn thẳng CN cắt đường tròn(i) ở F .cmr : DF//AE
Cho tam giác ABC có 3 góc nhọn. Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai là D, cắt AC, AB thứ tự tại E và F.
a Chứng minh D thuộc BC và 3 đường thẳng AD, BE, CF thẳng hàng
b]Chứng minh I là tâm đường tròn nội tiếp tam giác DEF
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D,E
a, CM tứ giác ABHK nột tiếp đường tròn. Xác định tâm dduongf tròn đó
b, CM HK// DE
c, Cho (O) và dây AB cố định,điểm C di chuyển trên (O) sao cho tam giác ABC có ba góc nhọn.Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CHK không đổi
Giups mình với.thanks ❤
Cho tam giác ABC vuông tại A có AC>AB. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm của đường tròn nội tiếp với các cạnh AB,BC,CA lần lượt tại M,N,P
1) Chứng minh AMIP là hình vuông
2) Đường thẳng AI cắt PN tại D. Chứng minh 5 điểm M,B,N,O,I nằm trên một đường tròn
3) Đường thẳng BI và đường thẳng CI cắt AC,AB lần lượt tại E,F. Chứng minh BE.CF=2 BI.CI
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
Cho tam giác abc vuông tại B ( BC>AB ) . Gọi I là tâm đường tròn nội tiếp tam giác các tiếp điển của đường tròn nội tiếp với các cạnh AB , BC , CA lần lượt là P,Q ,R. a,chứng minh rằng BPIQ là hình vuông b, Đường thẳng PI cắt QR tại D . CHỨNG minh P,A,R,D,I nằm trên 1 đường tròn
b, b) gọi I là Tđ của AO kẻ dây AE của đường tròn tâm I , đường kính AO sao cho AE//BC .Đường thẳng HE cắt MN tại K . CM IK vuông góc với BC