Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
sunsies

Cho tam giác ABC với BC = a, CA = b, AB = c. Gọi S là diện tích của tam giác ABC. CMR: \(S\le\frac{\sqrt{3}}{4}\cdot\sqrt[3]{a^2b^2c^2}\)

Akai Haruma
20 tháng 3 2019 lúc 13:38

Lời giải:

Theo công thức Herong thì:

\(S=\sqrt{p(p-a)(p-b)(p-c)}=\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\)

Do vậy ta cần CM: \(\frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}\leq \frac{\sqrt{3}}{4}.\sqrt[3]{a^2b^2c^2}\)

\(\Leftrightarrow (a+b+c)^3(a+b-c)^3(b+c-a)^3(c+a-b)^3\leq 27(abc)^4\)

Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\)

Điều cần CM trở thành: \(\frac{4096}{27}(x+y+z)^3(xyz)^3\leq [(x+y)(y+z)(x+z)]^4\)

----------------------------------------------

Thật vậy:

Ta có bổ đề quen thuộc: \((x+y)(y+z)(x+z)\geq \frac{8}{9}(xy+yz+xz)(x+y+z)\)

\(\Rightarrow [(x+y)(y+z)(x+z)]^4\geq \frac{4096}{9^4}(xy+yz+xz)^4(x+y+z)^4\)

Mà theo BĐT AM-GM:

\( \frac{4096}{9^4}(xy+yz+xz)^4(x+y+z)^4=\frac{4096}{27}(x+y+z)^3.\frac{(xy+yz+xz)^4(x+y+z)}{243}\)

\(\geq \frac{4096}{27}(x+y+z)^3.\frac{(3\sqrt[3]{x^2y^2z^2}]^4.3\sqrt[3]{xyz}}{243}=\frac{4066}{27}(x+y+z)^3(xyz)^3\)

Do đó: \([(x+y)(y+z)(x+z)]^4\geq \frac{4066}{27}(x+y+z)^3(xyz)^3\) (đpcm)

Vậy............


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Phạm hải  đăng
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
bach nhac lam
Xem chi tiết
trung le quang
Xem chi tiết
Kun ZERO
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Duyen Đao
Xem chi tiết
Big City Boy
Xem chi tiết