Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ \(\overrightarrow{AM}\) qua 2 vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)
Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho \(\overrightarrow{MB}=3\overrightarrow{MC}\). Hãy phân tích vectơ \(\overrightarrow{AM}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AB}\) và \(\overrightarrow{v}=\overrightarrow{AC}\) ?
Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
Bài 14. Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho EB = 2EA; M là điểm thỏa mãn vecto ME + 3vecto MC =vecto 0. Biểu diễn vectơ MA qua các vectơ MB , MC .
Cho tam giác ABC có trung tuyến AM (M là trung điểm của BC). Phân tích vectơ \(\overrightarrow{AM}\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ?
Cho tam giác ABC, trên đường thẳng AC lấy điểm M sao cho vecto MC = 3 vecto MA Đặt , vecto u = vecto BC , vecto v = vecto BA . Hãy phân tích các vecto BM theo hai vecto u và v.
Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích các vectơ \(\overrightarrow{AB,}\overrightarrow{BC},\overrightarrow{CA}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AK};\overrightarrow{v}=\overrightarrow{BM}\) ?
Cho M nằm trong tam giác ABC. CMR:Sa* vectơ MA+Sb*vectơ MB+ Sc* vectơ MC= vectơ 0. Với Sa là kí hiệu diện tích tam giác MBC,Sb là kí hiệu diện tích tam giác MCA, Sc là kí hiệu diện tích tam giác MAB
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên canh AC sao cho NA = 2NC. Gọi K là trung điểm của MN
Phân tích vectơ \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ?