Bài 4: Đường trung bình của tam giác, hình thang

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Garcello

Cho tam giác ABC, trung tuyến AM. Trên cạnhAB lấy hai điểm D, E sao cho AD=DE=EB. Gọi I là giao điểm của ÂM và CD. Chứng minh:            

A) EM//CD ; B) AI=IM ; C) DC=4DI

 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 22:28

a) Xét ΔBDC có 

E là trung điểm của BD(gt)

M là trung điểm của BC(gt)

Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Xét ΔAEM có 

D là trung điểm của AE(gt)

DI//EM(cmt)

Do đó: I là trung điểm của AM(Định lí 2 về đường trung bình của tam giác)

hay AI=IM(đpcm)

c) Xét ΔAEM có 

D là trung điểm của AE(gt)

I là trung điểm của AM(cmt)

Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)

Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà \(EM=\dfrac{DC}{2}\)(cmt)

nên \(DI=\dfrac{\dfrac{DC}{2}}{2}=\dfrac{DC}{4}\)

hay DC=4DI(Đpcm)


Các câu hỏi tương tự
Ruby Tran
Xem chi tiết
Lee Quốc Nguyênn
Xem chi tiết
Ngọc
Xem chi tiết
Trần Mạnh Quân
Xem chi tiết
경비>3
Xem chi tiết
Jiyoen Phạm
Xem chi tiết
Vũ Lan Phương
Xem chi tiết
Bé Tèo
Xem chi tiết
Lưu Hoàng Thiên Chương
Xem chi tiết