cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Tam giác ABC đường trung tuyến AM. Từ một điểm D bất kì trên cạnh AB vẽ đường thẳng song song với BC cắt AM, AC lần lượt tại I và E. Biết cạnh AB = 7cm, AC =10cm, AD = 3cm.
Tính AE.
Chứng minh: DI/CM=IE/BM và suy ra I là trung điểm của DE.
Gọi O là giao điểm của BE và DC. Chứng minh: O thuộc đường thẳng AM.
Kẻ ON // BC ( N thuộc EC) chứng minh: 1/ON = 1/DE + 1/BC.
Cho tam giác ABC, trung tuyến AM. Gọi I là điểm bất kỳ trên cạnh BC. Đường thẳng qua I song song với AC cắt AB ở K; đường thẳng qua I song song với AB cắt AC, AM theo thứ tự ở D, E. Chứng minh DE = BK
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Cho ∆ABC vuông tại A có đường trung tuyến AM. Vẽ BH vuông AM tại H, BH cắt AC tại D
a) Chứng minh : ∆BAD ~ ∆BHA
b) Chứng minh : BH = AH2/HD
c) Từ D kẻ đường thẳng song song với BC cắt AM tại I và cắt AB tại E.
Chứng minh : I là trung điểm DE
d) Chứng minh : C, H, E thẳng hàng
Cho tam giác abc có AB = 3cm, BC = 7cm, BD là đường phân giác (D thuộc AC). Kẻ AH, CK vuông với BD.
a) Chứng minh tam giác AHD ~ tam giác CKD.
b) Chứng minh Ad.BK = BC.BH.
c) Qua trung điểm I của AC kẻ đường thẳng song song BD cắt BC tại M, cắt tia AB tại N. Chứng minh AN = CM.
d) Chứng minh Sabc = 5Sbdi
Cho tam giác ABC (AB<AC). AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF=BG.