cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
Cho tam giác ABC (CA=CB), đường cao BD. Trên các cạnh BA,BC lấy tương ứng ở hai điểm E và F sao cho BE=BF=BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N , cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB,BC nếu biết EM=9cm, FN=12cm và IK=6cm.
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG
Bài 1 : Cho tam giác vuông cân ABC có góc C = 900 . Từ C kẻ 1 tia vuông góc với trung tuyến AM cắt AB ở D . Hãy tính tỉ số BD/DA
Bài 2 : Cho điểm E thuộc cạnh AC của tam giác ABC . Qua B kẻ 1 đường thẳng I . Đường thẳng qua E và song song với BC cắt I tại N . Đường thẳng qua E và song song với AB cắt I tại M . CMR: AN//CM
Cho tam giác ABC (AB<AC) và đường phân giác AD. Điểm M và N lần lượt nằm trên các cạnh AB và AC sao cho BM=CN. Gọi O là giao điểm của BN và CM. Đường thẳng qua O song song với AD cắt BC ở I. CMR: BI=CD.
Tam giác ABC đường trung tuyến AM. Từ một điểm D bất kì trên cạnh AB vẽ đường thẳng song song với BC cắt AM, AC lần lượt tại I và E. Biết cạnh AB = 7cm, AC =10cm, AD = 3cm.
Tính AE.
Chứng minh: DI/CM=IE/BM và suy ra I là trung điểm của DE.
Gọi O là giao điểm của BE và DC. Chứng minh: O thuộc đường thẳng AM.
Kẻ ON // BC ( N thuộc EC) chứng minh: 1/ON = 1/DE + 1/BC.