a: AK/AB+BE/BC+CF/CA
=CM/BC+BE/BC+BH/BA
=(CM+BE)/BC+1-AH/AB
=(BC-EM)/BC+1-HF/BC
=1
b: DE/AB+FH/BC+MK/CA
=CE/CB+FH/BC+BM/BC
=(CE+BM+FH)/BC=2
a: AK/AB+BE/BC+CF/CA
=CM/BC+BE/BC+BH/BA
=(CM+BE)/BC+1-AH/AB
=(BC-EM)/BC+1-HF/BC
=1
b: DE/AB+FH/BC+MK/CA
=CE/CB+FH/BC+BM/BC
=(CE+BM+FH)/BC=2
Cho ∆ABC , O là một điểm thuộc miền trong tam giác. Qua điểm O kẻ HF// BC, DE// AB, MK// AC với H, K ∈ AB; E, M ∈ BC; D, F ∈ AC.
Chứng minh rằng:
a) \(\dfrac{AK}{AB}+\dfrac{BE}{BC}+\dfrac{CF}{CA}\)=1
b) \(\dfrac{DE}{AB}+\dfrac{FH}{BC}+\dfrac{MK}{CA}\)=2
CÁCH VẼ THÊM : TỪ F VẼ FI SONG SONG VỚI DE
giúp mình với
cho tam giác ABC. điểm D thuộc BC , kẻ DE// AC [E thuộc AB] , kẻ DF //AB [F thuộc AC ].lấy k trên de sao cho ek=cf.cm ak đi qua trung điểm bc
Cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm D bất kỳ trên cạnh BC, kẻ de vuông góc với AC
a. chứng minh rằng EF= AD
b. gọi o là giao điểm cua EF và AD. chứng minh rằng HO = 1/2 EF
c. tìm vị trí của điểm D trên BC sao cho EF có độ dài nhỏ nhất
Cho tam giác ABC. Lấy D trên AB sao cho AD= 2cm, DB= 3cm và BC= 6,5 cm. Từ D kẻ DE//AC ( E thuộc AC và AE= 2,5 cm ). Tính EC và DE.
Cho tam giác ABC có AB=14cm, AC=10cm, CB=12cm. Đường phân giác của góc BAC cắt cạnh BC ở D.
a, tính độ dài các đoạn thẳng BD,DC
b, tính tỉ số diện tích của tam giác ABD và tam giác ACD
c, Qua D kẻ đường thẳng song song với AB cắt cạnh ÁC ở E. Tính DE, AE, EC
Giúp mình với mấy bạn ơiiiiiiii<3
Cho tam giác ABC. Lấy điểm D thuộc đoạn AB, điểm E thuộc tia đối của tia CA sao cho BD = CE. Gọi giao điểm của DE và BC là M. CM: \(\dfrac{DM}{ME}=\dfrac{AC}{AB}\)
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN