CHo tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) và H là trực tâm của tam giác ABC. Đường cao AD cắt đường tròn tại điểm M khác A. Vẽ đường kính AN. a) CM: BH // CN
b) CM: DH = DM
c) Biết AH = R. Tính góc BAC
(Giải câu c thôi)
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi AH, BK là đường cao của tam giác ABC (H thuộc BC; K thuộc AC). Các tia AH, BK lần lược cắt (O) tại các điểm thứ hai là D, E a)Trên hình vẽ có bao nhiêu tứ giác nội tiếp một đường tròn. Hãy chứng minh b Chứng minh rằng: góc AHC bằng Góc ADC.
cho tam giác ABC nhọn nội đường tròn tâm O phân giác A cắt (O) tại M phân giác ngoài A cắt (O) tại N AH vuông với BC kẻ đg kính ok , AH giao với (O) tại I
b,góc BMC = Góc ABC + ACB
c, M, O, N thẳng hàng
d, AM là phân giác của góc HOA
e,cung BI = cung CK
f, DB.DC=DM.DA
g,MC^2=MD.MA
Cho tam giác ABC nội tiếp (O) đường kính BC có AB > AC , hai tiếp tuyến tại A và B cắt nhau tại M .
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn và xác định tâm I của đường tròn này.
2) Chứng minh : .
3) Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.
Cho đường tròn (O), điểm M nằm ngoài (O). Kẻ tiếp tuyến MA và cát tuyến MBC. Đường cao AH của tam giác ABC, phân giác góc BAC cắt BC ở D, cắt (O) ở E. C/m:
a) OE // AH
b) MA = MD
c) AD.AE = AC.AB
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
cho tam giác nhọn ABC nội tiếp đường tròn tâm O, gọi H là trực tâm, I là tâm đường tròn nội tiếp tam giác
a) AI là tia phân giác góc OAH
b) cho góc BAC= 60 độ , chứng minh IO=IH
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ