a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(đpcm)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(đpcm)
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE cắt nhau tại H. Tiếp tuyến tại A của (O) cắt đường thằng BC tại M.
a) C/M tứ giác DHEC nội tiếp
b)CM 4 điểm A,B,D,E cùng thuộc 1 đg tròn
c)CM MA2=MB.MC
d) AD cắt (O) tại điểm thứ hai là I.Vẽ đường kính AK của (O).CM BK=CI
e) Kẻ IF vuông góc với AB (F thuộc AB). FD cắt AC tại .CM IN//BE
Giải hộ em câu d và e thôi ạ mấy câu kia giải hay không cũng được.
Cho tam giác ABC có 3 góc nhọn (AB<AC), nội tiếp (O) bán kính R. 2 đường cao BE, CF tam giác ABC cắt nhau tại H.
a, CM OA vuông góc EF.
b, Gọi K là trung điểm BC, OA cắt BC tại I, EF cắt AH tại P. CM tam giác APE đồng dạng tam giác AIB.
c, CM KH//IP.
1) Cho tg nhọn ABC (AB< AC) nội tiếp đường tròn (O). Đường cao AD, BE, CF cắt nhau tại H a) Cm: BFHD nội tiếp b) Gọi M là điểm đối xứng của H qua AC. Cm M thuộc (O) và BH.HM=2FH.CM c) Tia MD căt (O) tại N (N khác M), gọi I là giao điểm FD, AN. Cm: IF=IN
Cho tam giác ABC nhọn (AB > AC) nội tiếp đường tròn (O;R) .Hai đường tròn AD và BE cắt nhau tại H. Vẽ đường kính của (O) cắt BC tại I. Gọi F là hình chiếu của C trên AB
a Chứng minh tứ giác ADFC nội tiếp
b Chứng minh AB . AC = 2R . AD
c CM: DF//CH
d Vẽ đường tròn đường kính AH cắt (O) tại K. Chứng minh HK đi qua trung điểm của BC
cho tam giác ABC nhọn (AB<AC) nội tiếp (O) các đường cao AD,BE CF cắt nhau tại H
a) chứng minh CDHE nội tiếp
b) EF và BC cắt nhau tại M , chứng minh MB.MC=ME.MF
c) đường thẳng qua B và song song AC cắt AM,AH tại I,K. Chứng minh HB là phân giác của IHK
Cho tam giác ABC(AB<AC) mở ba góc nhọn nội tiếp đường tròn(O).Hai đường cao BE,CF cắt nhau tại H. Gọi K là trung điểm em của đoạn thẳng BC. Đường thẳng OA cắt đường thẳng BC tại điểm I,đường thẳng EF cắt đường thẳng AH tại điểm P.Chứng minh đường thẳng song song với đường thẳng IP
b, b) gọi I là Tđ của AO kẻ dây AE của đường tròn tâm I , đường kính AO sao cho AE//BC .Đường thẳng HE cắt MN tại K . CM IK vuông góc với BC
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn
2, chứng minh EA.ED=EB.EC
3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
lưu ý đọc kĩ đề
cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O). 2 đường cao BE và CF của tam giác ABC cắt nhau tại điểm H.
1) Cm 4 điểm B,C,E,F cùng thuộc 1 đường tròn .
2) Cm đường thẳng OA vuông góc với đường thẳng EF
3) gọi K là trung điểm của đoạn thẳng BC. đường thẳng OA cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Cm tam giác APE đồng dạng với tam giác AIB và đuòng thẳng KH song song với đường thẳng PI.