Cho tam giác ABC, M là trung điểm của BC. Chứng minh: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
Cho tam giác ABC , M là trung điểm của Ab , N là trung điểm của Ac . Trên tia MN lấy điểm P sao cho N là trung điểm của MP
a/ Chứng minh MB=CP
b/ Chứng minh tam giác BMC = tam giác PCM
c/ Chứng minh MN//BC và MN = 1/2 BC
Lớp 7
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
Cho ΔABC, M là trung điểm của BC. Chứng minh: AB2 + AC2 = 2.AM2 + \(\frac{BC^2}{2}\)
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC. Chứng minh MN song song với BC và \(MN=\frac{1}{2}.BC\)
Cho tam giác ABC ,M là trung điểm của BC
Chứng minh :\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sso cho MD=MA a) Chứng minh tam giác AMB= tam giác DMC b) Chứng minh AB+AC lớn hơn 2am
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng