Kẻ AH ⊥ BC(H ∈ BC)
Ta có: \(AB^2+AC^2=AH^2+BH^2+AH^2+HC^2\)
\(=2AH^2+\left(MB-MH\right)^2+\left(MC+MH\right)^2\)
\(=2AH^2+MB^2-2MB.MH+MH^2+MC^2+2MC.MH+MH^2\)
\(=2\left(AH^2+MH^2\right)+2MB^2\) (Vì MB = MC)
\(=2.AM^2+\frac{BC^2}{2}\left(đpcm\right)\)
Kẻ AH ⊥ BC(H ∈ BC)
Ta có: \(AB^2+AC^2=AH^2+BH^2+AH^2+HC^2\)
\(=2AH^2+\left(MB-MH\right)^2+\left(MC+MH\right)^2\)
\(=2AH^2+MB^2-2MB.MH+MH^2+MC^2+2MC.MH+MH^2\)
\(=2\left(AH^2+MH^2\right)+2MB^2\) (Vì MB = MC)
\(=2.AM^2+\frac{BC^2}{2}\left(đpcm\right)\)
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM
b) Chứng minh rằng AK = 2.MC
c) Tính số đo của?
Cho ΔABC cân tại A. Trên cạnh đáy BC lấy 2 điểm D và E sao cho: góc BAD= góc DAE= góc EAC. Gọi M là trung điểm của DE
a. Chứng minh: AM ⊥ DE
b. Tìm cạnh lớn nhất trong ΔABD
Cho ΔABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a. Chứng minh: ΔABM = ΔDCM
b. Chứng minh: AB // DC
c. Kẻ BE ⊥ AM ( E ∈ AM) , CF ⊥ DM (F ∈ DM) . Chứng minh: M là trung điểm của EF
Cho ΔABC cân tại A. Trên cạnh đáy BC lấy 2 điểm D và E sao cho: góc BAD= góc DAE= góc EAC. Gọi M là trung điểm của DE
a. Chứng minh: AM ⊥ DE
b. Tìm cạnh lớn nhất trong ΔABD
GIÚP MÌNH VỚI MAI MÌNH KIỂM TRA RỒI:<
3 : Cho hình vẽ sau:
Biết: BD = 8cm, AB = 10cm, AC = 17cm
a) Tính BC?
b) Lấy điểm K bất kỳ thuộc đoạn AE.
Chứng minh rằng: AC2 – AB2 = KC2 – KB2
Cho tam giác ABC, M là trung điểm của BC. Chứng minh: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
Cho tam giác ABC, M là trung điểm của BC. Chứng minh: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)