Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh BF.BA+ CE.CA= BC^2?
tam giác ABC. M bất kì trong tam giác kẻ MD vuông BC , MK vuông Ab;MH vuông AC. Gọi h A, h B, h C là các đường cao từ A, B , C của tam giác ABC. Tính MD/hA+MH/hB+MK/hC
Cho tam giác ABC với ba đường cao AA', BB', CC'. Gọi H là trực tâm của tam giác đó. Chứng minh rằng :
\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=1\)
Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .
Cho tam giác ABC vuông ở C, đường cao CH,các đường phân giác cắt nhau ở I. P và Q là hình chiếu của I trên AC và AB, CH cắt PQ ở N. K là trung điểm của BC. Gọi IK cắt AC ở M Chứng minh CM = CN
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB,AC.
a) Chứng minh tứ giác BMNC là hình thang. Tính SBMNC biết SABC= 80cm2, BC=20cm2.
b) Gọi I là trung điểm của AM; K là điểm đối xứng của M qua I. Chứng minh BMKN là hình bình hành.
c) Gọi G là giao điểm của BN và CM. Chứng minh AG, KN và BC đồng quy.
Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).
a)Chứng minh: HD/AD+HE/BE+HF/CF=1
b) Tính HA/AD+HB/BE+HC/CF
Trong tam giác vuông ABC (∠C = 90◦ ), các điểm K, L và M lần lượt nằm trên các cạnh AC, BC và AB sao cho AK = BL = a, KM = LM = b và ∠KML = 90◦ . Chứng minh rằng a = b