-Bạn thử vẽ hình đi. Chứ mình dùng ứng dụng rồi nhưng không vẽ được.
-Bạn thử vẽ hình đi. Chứ mình dùng ứng dụng rồi nhưng không vẽ được.
Cho các điểm D,E,F lần lượt nằm trên các cạnh BC,CA,AB của tam giác ABC sao cho \(\frac{DB}{DC}\)=\(\frac{EC}{EA}\)=\(\frac{FA}{FB}\).Gọi M,P lần lượt là trung điểm của BC,DF và kẻ FN // AC với N thuộc BC
a,CM M là trung điểm DN
b,CM MP // và bằng 1 nửa AE
c,Tam giác ABC và DEF có cùng trọng tâm
Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG
a) Tính các góc B, C cạnh AC và diện tích tam giác ABC
b) Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE
c) Tính diện tích tứ giác DEFG
Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2BM/AN =BN/CN và góc BNM = góc ANC . Gọi P là trung điểm AM,Q là giao điểm AN và CP.Chứng minh:
a,MN // CP
b, Tam giác AQC cân tại Q
c, Tam giác ABC vuông tại C
Cho tam giác ABC vuông ở C, đường cao CH,các đường phân giác cắt nhau ở I. P và Q là hình chiếu của I trên AC và AB, CH cắt PQ ở N. K là trung điểm của BC. Gọi IK cắt AC ở M Chứng minh CM = CN
Cho tam giác ABC vuông tại A và M là trung điểm cạnh BC. kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC)
a)chứng minh tứ giác ADME là hình chữ nhật
b)gọi P là điểm đối xứng của M qua D; Q là điểm đối xứng của M qua E . Chứng minh tứ giác PAMB là hình thoi
c)P đối xứng với Q qua A
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB,AC.
a) Chứng minh tứ giác BMNC là hình thang. Tính SBMNC biết SABC= 80cm2, BC=20cm2.
b) Gọi I là trung điểm của AM; K là điểm đối xứng của M qua I. Chứng minh BMKN là hình bình hành.
c) Gọi G là giao điểm của BN và CM. Chứng minh AG, KN và BC đồng quy.