Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho tam giác ABC vuông tại A và M là trung điểm cạnh BC. kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC)
a)chứng minh tứ giác ADME là hình chữ nhật
b)gọi P là điểm đối xứng của M qua D; Q là điểm đối xứng của M qua E . Chứng minh tứ giác PAMB là hình thoi
c)P đối xứng với Q qua A
Cho tam giác ABC cân tại A , đường cao AH . Biết AB = 5cm; BC = 6cm. a) Tính diện tích ∆ABC . b) Gọi M là trung điểm của AB ; Q là điểm đối xứng với H qua M . Tứ giác AHBQ là hình gì? Vì sao? c) Gọi F là điểm đối xứng với A qua BC ; N là giao điểm của QF và BH . Tính độ dài đoạn thẳng MN . d) Vẽ HK vuông góc với CF tại K ; ∆ABC cần thêm điều kiện gì để ba điểm Q , H , K thẳng hàng? e) Gọi I là trung điểm của HK . Chứng minh FI vuông góc với BK
Cho hình chữ nhật ABCD( AB>BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H.
a) Tứ giác BCEQ là hình gì? Vì sao?
b)QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại o.CM tam giác OEM là tam giác cân
c) chứng minh rằng ADCE là hình thang cân
d) chứng minh 3 điểm N, M, H thẳng hàng
Cho các điểm D,E,F lần lượt nằm trên các cạnh BC,CA,AB của tam giác ABC sao cho \(\frac{DB}{DC}\)=\(\frac{EC}{EA}\)=\(\frac{FA}{FB}\).Gọi M,P lần lượt là trung điểm của BC,DF và kẻ FN // AC với N thuộc BC
a,CM M là trung điểm DN
b,CM MP // và bằng 1 nửa AE
c,Tam giác ABC và DEF có cùng trọng tâm
Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .