Cho tam giác ABC . D là trung điểm của AB . Đường thẳng kẻ qua D và song song với BC cắt AC ở E . Đường thẳng kẻ qua E và song song với AB cắt BC ở F . Chứng minh :
a) AD = EF .
b) AE = EC và BF = FC .
c) DE = \(\frac{1}{2}\) BC và EF = \(\frac{1}{2}\) AB .
Giup mình nhé các bạn ơi , mình đang rất cần rồi .![]()
Bạn tự vẽ hình nha!!!
a) Vì AD // FE nên \(\widehat{ADE}=\widehat{FED}\) (2 góc so le trong) và \(\widehat{AED}=\widehat{FDE}\) (2 góc so le trong)
Xét \(\Delta ADE\) và \(\Delta FED\) có:
\(\widehat{ADE}=\widehat{FED}\) (c/m trên)
DE là cạnh chung
\(\widehat{AED}=\widehat{FDE}\) (c/m trên)
=> \(\Delta ADE=\Delta FED\) (g.c.g)
=> AD=EF (2 cạnh tương ứng)
b) Vì FD // EC nên \(\widehat{DFE}=\widehat{CEF}\) (2 góc so le trong)
Mặt khác DE // CF nên \(\widehat{DEF}=\widehat{CFE}\) (2 góc so le trong)
Xét \(\Delta FED\) và \(\Delta EFC\) có:
\(\widehat{DEF}=\widehat{CFE}\) (c/m trên)
EF là cạnh chung
\(\widehat{DFE}=\widehat{CEF}\) (c/m trên)
=> \(\Delta FED=\Delta EFC\left(g.c.g\right)\)
=> \(\Delta ADE=\Delta EFC\left(\Delta ADE=\Delta FED\right)\)
=> AE=EC (2 cạnh tương ứng)
Vì AD=EF(c/m trên). Mà AD=BD (D là trung điểm của AB)
=> BD=EF
Mặt khác \(\Delta FED=\Delta EFC\) (c/m trên)
=> FD=EC (2 cạnh tương ứng)
Ta có: EF // BD nên \(\widehat{BDF}=\widehat{DFE}\) (2 góc so le trong)
Mà \(\widehat{DFE}=\widehat{CEF}\) (c/m trên) => \(\widehat{BDF}=\widehat{CEF}\)
Xét \(\Delta BDF\) và \(\Delta FEC\) có:
\(\widehat{BDF}=\widehat{CEF}\) (c/m trên)
FD=EC (c/m trên)
\(\widehat{BFD}=\widehat{FCE}\) (FD // EC)
=> \(\Delta BDF=\Delta FEC\left(g.c.g\right)\)
=> BF=FC (2 cạnh tương ứng)
c) Vì \(\Delta FED=\Delta EFC\) (c/m trên) => DE=FC (2 cạnh tương ứng). Mà DF=\(\frac{1}{2}BC\) (BF=FC)
=> DE=\(\frac{1}{2}BC\)
Mặt khác EF=AD (c/m trên). Mà AD=\(\frac{1}{2}BC\) (D là trung điểm của AB)
=> EF=\(\frac{1}{2}AB\)