Cho tam giác ABC có tia phân giác của góc B cắt AC tại M. Trên tia đối của tia AB lấy điểm E sao cho BE= BC. Trên tia đối của tia BC lấy điểm F sao cho BF=AB. Chứng minh:
a) Các đường thẳng AF, BM, EC song song với nhau;
b) Nếu BM \(\perp\) AC thì AE=FC;
c) Nếu BM \(\perp\) AC và góc ABC = 1v thì AC=EC=EF=FA.