Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
mà AB<AC
nên BD<DC
Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
mà AB<AC
nên BD<DC
Cho tam giác ABC có góc B = góc C = 40 độ. Kẻ phân giác BD. Chứng minh rằng BD + AD = BC
Cho tam giác ABC , AB=AC Kẻ Bd và CE vuông góc với Ac, AB.
A) CMR: BD=CE
B) Gọi I là giao điểm của BD và CMR: tam giác AIB=tam giác DIC
C) Ai là tia phân giác của góc BAC
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
1)Cho tam giác đều ABC, phân giác BD và CE cắt nhau tại O. CMR:
a) BD vuông góc AC và CE vuông góc Ab
b) OA=OB=OC
2)Cho tam giác ABC vuông tại A có góc C=45 độ. Vẽ phân giác AD. Trên tia đổi của tia AD lấy điểm E sao cho AE=BC. Trên tia đối của tia CA lấy điểm F sao co CF=AB
CMR: BE+BF và BE vuông BF
giúp vs
cho tam giác ABC có A =90độ , BC=2AB. E là trung điểm BC, tia phân giác góc B cắt AC tại D
a) chứng minh DB là phân giác góc ADE
b) BD=DC
c) tính B và C của tam giác ABC
Cho tam giác ABC có góc B và góc C. Tia phân giác BD của CE của góc B và góc C cắt nhau tại O. Từ O kẻ OH vuông góc với AC, OK vuông góc với AB. Chứng minh:
a) Tam giác ABC bằng tam CBE.
b) OB = OC.
c) OH = OK
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a.DE vuông góc với BC
AE vuông góc với BD
b.AD<DC
c.tam giác ADF=tam giác EDC
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
c) Tính góc B, góc C của tam giác ABC