a)\(\Delta ABC:\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{A}=120^o\Rightarrow\widehat{B}+\widehat{C}=60^o\)
Có \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}\) ; \(\widehat{ACE}=\widehat{ECB}=\dfrac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{ABD}+\widehat{DBC}+\widehat{ACE}+\widehat{ECB}=60^o\)
\(\Rightarrow2\widehat{DBC}+2\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{DBC}+\widehat{ECB}=30^o\)
\(\Delta BIC:\widehat{DBC}+\widehat{ECB}+\widehat{BIC}=180^o\)
Mà \(\widehat{DBC}+\widehat{ECB}=30^o\) \(\Rightarrow\widehat{BIC}=150^o\)
b)Ta vẽ tia đối Ax là tia đối tia AB
Ta có \(\widehat{BAF}=\widehat{FAC}=\dfrac{\widehat{BAC}}{2}=60^o\) (1)
Thấy\(\widehat{BAC}+\widehat{CAx}=180^o\) (2 góc kề bù)
Mà\(\widehat{BAC}=120^o\Rightarrow\widehat{CAx}=60^o\) (2)
Từ (1) và (2)\(\Rightarrow\) \(\widehat{FAC}=\widehat{CAx}=60^o\)
Nên AC là tia phân giác \(\widehat{FAx}\)
\(\Delta ABF:\)BD là tia phân giác \(\widehat{ABC}\)(tia p/g trong)
AC là tia phân giác \(\widehat{FAx}\) (tia p/g ngoài)
Mà AC,BD,FD đồng quy tại D
Theo t/c 1 đường p/g trong và 2 đường p/g ngoài không kề nó đồng quy tại 1 điểm nên FD là tia phân giác \(\widehat{AFC}\) (cái này là nó được c/m ở SGK bài 32 đó bạn)
Làm tương tự ta cũng được FE là tia phân giác \(\widehat{AFB}\) (bạn sử dụng tam giác AFC ý)
Ta có \(\widehat{AFB}+\widehat{AFC}=180^o\) (2 góc kề bù)
Ta cũng có \(\widehat{BFE}=\widehat{EFA}=\dfrac{\widehat{AFB}}{2}\) ; \(\widehat{AFD}=\widehat{DFC}=\dfrac{\widehat{AFC}}{2}\)
\(\Rightarrow\widehat{BFE}+\widehat{EFA}+\widehat{AFD}+\widehat{DFC}=180^o\)
\(\Rightarrow2\widehat{EFA}+2\widehat{ADF}=180^o\) \(\Rightarrow\widehat{EFA}+\widehat{ADF}=90^o\) \(\Rightarrow\widehat{DFE}=90^o\Rightarrow DF\perp EF\) Chúc bạn học tốt!!!!! Tick mình nha