a: Xét ΔEAB có
EM vừa là đường cao, vưa là trung tuyến
=>ΔEAB cân tại E
b: Xét ΔEBD và ΔEAF có
EB=EA
góc DBE=góc AFE
BD=AF
=>ΔEBD=ΔEAF
=>ED=EF
=>EF>DF/2
a: Xét ΔEAB có
EM vừa là đường cao, vưa là trung tuyến
=>ΔEAB cân tại E
b: Xét ΔEBD và ΔEAF có
EB=EA
góc DBE=góc AFE
BD=AF
=>ΔEBD=ΔEAF
=>ED=EF
=>EF>DF/2
Cho ABC [ cân tại A. Vẽ AH ⊥BC ( H ∈ BC) . a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân. b) Trên các cạnh AB, AC lần lượt lấy các điểm D, F sao cho BD = AF. Chứng minh EF > DF2 . c) Trên tia đối của tia BA lấy điểm K sao cho BA = BK. CMR: CM = CK2
Cho tam giác ABC cân tại A. Vẽ AH⊥BC (H ∈ BC) . a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân.
a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân.
b) Trên các cạnh AB,AC lần lượt lấy các điểm D,F sao cho BD = AF. Chứng minh EF >
DF/2
c) Trên tia đối của tia BA lấy điểm K sao cho BA = BK. CMR: CM =
CK/2
cho tam giác ABC cân tại A , gọi M là trung điểm BC
a)chứng minh tam giác ABM=tam giác ACM
b)trên cạnh AM lấy điểm K bất kỳ, chứng minh rằng KB = KC
c)tia BK cắt cạnh AC tại F, tia CK cắt cạnh AB tại E . chúng minh EF//BC
Cho tam giác ABC vuông tại A, AB<AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh AB=BE.
b) Chứng minh BD là đường trung trực của AE.
c) Tia ED vắt tia BA tại điểm K. Chứng minh °DKC cân và DA<DC.
d) Chứng minh BD vuông góc với CK .
Câu 22: Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho AK = AB.
a) Chứng minh rằng ∆CBK là tam giác cân.
b) Gọi N là trung điểm của CK, đường thẳng qua K và song song với BC cắt đường thẳng BM tại H. Chứng minh rằng BC = KE và BC + BK > BE.
c) Gọi G là giao điểm của AE và KM. Chứng minh rằng BC = 6GM.
Giaỉ theo cách lớp 7 nhé
Câu c thôi nhé
Cho tam giác ABC cân tại A. Kẻ tia phân giác CD (D thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt CB tại F và CA tại K. Ddường thẳng kẻ qua D và // BC cắt AC tại E. Phân giác của gọc BAC cắt DE tại M. Chứng minh rằng:
a) Tam giác CDF và tam giác CDK bằng nhau.
b) Các tam giác DEC và DEK là tam giác cân.
c) CF = 2BD.
d) MD = 1/4CF.
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DEBC (EBC).Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh:
1. ABD =EBD
2. BD là đường trung trực của đoạn thẳng AE
3. AD < DC
4. và E, D, F thẳng hàng.
Bài 6: Cho ABC vuông tại A có AB = 3 cm; BC = 5 cm.
a.Tính AC.
b) Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ^ BC (E Î BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh DADF = DEDC rồi suy ra DF > DE