§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
minh hy

cho tam giác ABC có G là trọng tâm H đối xứng với B qua G , M là trung điểm của BC , chứng minh :

\(\overrightarrow{MH}=\dfrac{1}{6}\overrightarrow{AC}-\dfrac{5}{6}\overrightarrow{AB}\)

Akai Haruma
1 tháng 10 2017 lúc 0:07

Lời giải:

Ta luôn có \(B,G,M,H\) thẳng hàng.

Vì $H$ đối xứng với $B$ qua $G$ nên $BG=GH$; mà theo tính chất trọng tâm tam giác thì \(GM=\frac{1}{2}BG\) \(\Rightarrow GM=\frac{1}{2}GH\). Do đó $M$ là trung điểm của $GH$

\(\Rightarrow \overrightarrow{MH}=\overrightarrow{GM}\) (1)

Ta có:

\(\left\{\begin{matrix} \overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}\\ \overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\end{matrix}\right.\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}+(\overrightarrow{AM}+\overrightarrow{CM})\)

\(\overrightarrow{AM}+\overrightarrow{CM}=0\) do $M$ là trung điểm $AC$

\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GA}+\overrightarrow{AC}=2\overrightarrow{GA}+\overrightarrow{AC}\)

\(\Leftrightarrow 2\overrightarrow{GM}=2(\overrightarrow {GB}+\overrightarrow{BA})+\overrightarrow{AC}=2\overrightarrow{GB}+\overrightarrow{AC}-2\overrightarrow{AB}\)

\(MG=\frac{1}{2}BG\) (cmt) do đó \(\overrightarrow{GM}=\frac{1}{2}\overrightarrow{BG}=-\frac{1}{2}\overrightarrow{GB}\)

\(\Rightarrow 2\overrightarrow {GM}=-4\overrightarrow{GM}+\overrightarrow{AC}-2\overrightarrow{AB}\)

\(\Leftrightarrow 6\overrightarrow{GM}=\overrightarrow{AC}-2\overrightarrow{AB}\Leftrightarrow \overrightarrow{GM}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\) (2)

Từ \((1),(2)\Rightarrow \overrightarrow{MH}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)


Các câu hỏi tương tự
Phong Trần
Xem chi tiết
xữ nữ của tôi
Xem chi tiết
Airi chan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Mai
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Ngọc Phương Anh
Xem chi tiết
Nguyễn Phi Hòa
Xem chi tiết