Xét tam giác ADE và ABC có
A : góc chung
D = B (đồng vị)
E = C (đồng vị)
Ta có: Dx // BC mà D là trung điểm của AB
=> E là trung điểm của AC
=> AE = EC (đpcm)
Xét tam giác ADE và ABC có
A : góc chung
D = B (đồng vị)
E = C (đồng vị)
Ta có: Dx // BC mà D là trung điểm của AB
=> E là trung điểm của AC
=> AE = EC (đpcm)
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
Cho tam giác ABC vuông tại A có B= 60 độ. Vẽ AH vuông góc với BC tại H
a. tính số đo góc HAB
b.trên cạnh AC lấy điểm D sao cho AD = AH.gọi I là trung điểm của cạnh HD. chứng minh tam giác AHI = tam giác ADI
c. tia AI cắt HC tại điểm K. chứng minh: tam giác AHK= tam giác ADK từ đó suy ra AB song song KD.
d. trên tia đối của HA lấy điểm E sao cho HE = AH. CHỨNG MINH : H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
giải giúp mình nhé, tớ đang cần gấp(cần nhất là câu c, d)
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy D sao cho AD = AB. Tia AD của góc A cắt BC tại E.
a ) chứng minh tam giác ABE = tam giác ADE
b ) gọi giao điểm của BD và AE là H
c ) Qua C kẻ đường thẳng song song với BD,cắt AD tại F. Chứng minh 3 điểm F;E;D thẳng hàng
Cho tam giác ABC, gọi D là trung điểm của cạnh AB. Đường thẳng đi qua D và song song với BC cắt AC ở M. Gọi E là trung điểm của AM. Trên tia đối ED lấy K sao cho EK =ED. KM cắt BC ở N.
a. C/m tam giác AED = MEK và MK // AD
b. C/m tam giác DMN = NBD
c. C/m DN // AC
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm E.
a) CMinh: Góc EAD= ADE
b) Cminh: Góc ABC= DEF
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm F.
a) CMinh: Góc EAD= ADE
b) Cminh: Góc ABC= DEF
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm O.
a) CMinh: Góc EAD= ADE
b) Cminh: Góc ABC= DEF