Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔACB vuông tại A
\(\widehat{BAH}+\widehat{B}=90^0\)
\(\widehat{ACB}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAH}=\widehat{ACB}\)
\(\widehat{HAC}+\widehat{C}=90^0\)
\(\widehat{ABC}+\widehat{C}=90^0\)
Do đó: \(\widehat{HAC}=\widehat{ABC}\)