Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
Cho hình chữ nhật ABCD tâm O. AB=a, AD= 2a và E là trung điểm AD
a) C/m: \(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=3\overrightarrow{AB}\)
b) C/m: \(2\overrightarrow{EA}+\overrightarrow{EB}+4\overrightarrow{ED}=\overrightarrow{EC}\)
c) M là trung điểm trên CD. Xác định M để: \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\)min
d) Gọi F là điểm trên AC. Tìm GTNN của biểu thức:
P=\(\left|\overrightarrow{FA}+\overrightarrow{FB}-\overrightarrow{FC}\right|\)
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)
Cho tam giác ABC vuông tại A có AB=a , BC =2a .Gọi M ,N lần lượt là trung điểm của AC , BC .
a) Tính số đó các góc của tam giác ABC .
b) Xác định các góc( \(\overrightarrow{AB},\overrightarrow{MN}\)),
(\(\overrightarrow{MN},\overrightarrow{MB}\)) , (\(\overrightarrow{AB},\overrightarrow{BC}\)) ,( \(\overrightarrow{NM},\overrightarrow{BC}\))
c) Tính tích vô hướng : \(\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{BC.}\overrightarrow{AC},\overrightarrow{MN.}\overrightarrow{BC},\overrightarrow{BN}.\overrightarrow{AC},\overrightarrow{AN.}\overrightarrow{BC}\)
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
Cho ΔABC có trung tuyến AD, trọng tâm G. Một đường thẳng qua G cắt AB, AC tại M và N
Khẳng định nào sau đây đúng ?
A. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
B. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
C.\(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{3}{2}\overrightarrow{AM}.\overrightarrow{NC}\)
D. \(\overrightarrow{AM}.\overrightarrow{AN}=\overrightarrow{AN}.\overrightarrow{MB}+\overrightarrow{AM}.\overrightarrow{NC}\)
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)
cho tam giác ABC vuông tại A và AB=a , \(\widehat{BCA}\) = 30 , gọi D là trung điểm AC và lấy I sao cho ABID là hình chữ nhật
a) gọi K là điểm thuộc đoạn thẳng BC ( khác B, C ) , thỏa mãn \(\overrightarrow{BK}\) = x. \(\overrightarrow{BC}\) . tìm x sao cho 3 điểm A, K , I thẳng hàng
b) tìm tập hợp điểm M thỏa mãn 2MB2 + MC2 -MA2 = 2a2