a)Xét ΔADB và ΔADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD:cạnh chung
=> ΔADB=ΔADE(c.g.c)
b)Vì: ΔADB=ΔADE(cmt)
=> \(\widehat{ABD}=\widehat{AED};BD=DE\)
Xét ΔDBH và ΔDEK có:
\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)
BD=DE(cmt)
\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)
=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)
=>BH=EK
Ta có hình vẽ sau:
a/ Xét ΔADB và ΔADE có:
AD: Cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) (gt)
AB = AE (gt)
=> ΔADB = ΔADE (c.g.c) (đpcm)
b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)
và DB = DE (2 cạnh tương ứng)
Xét 2Δ vuông: ΔDBH và ΔDEK có:
DB = DE (cmt)
\(\widehat{ABD}=\widehat{AED}\) (cmt)
=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)
=> BH = EK(2 cạnh tương ứng)(đpcm)