Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm
a/ Chứng minh tam giác ABC là tam giác vuông
b/ Gọi M là trung điểm của cạnh AC. Trên tia đối của tia MB, lấy điểm D sao cho MB = MD.
Chứng minh △ABM = △CDM, suy ra AC ⊥ CD.
c/ Gọi N, K lần lượt là trung điểm của CD và BC, BN cắt AC tại H. Chứng minh K, H, D thẳng hàng.
a) Ta có:
5² = 25
3² + 4² = 25
⇒ 5² = 3² + 4² hay BC² = AB² + AC².
Theo định lý Pitago đảo ⇒ ΔABC vuông tại A. (đpcm)
b) Xét ΔABD và ΔEBD có:
BC là cạnh chung.
(do BD là tia phân giác của góc B giả thiết)
.
⇒ ΔABD = ΔEBD (cạnh huyền - góc nhọn)
⇒ DA = DE (hai cạnh tương ứng) (đpcm)
c) Xét ΔADF và ΔEDC có:
DA = DE (cmt)
(2 góc đối đỉnh)
⇒ ΔADF = ΔEDC (g.c.g)
⇒ DF = DC (hai cạnh tương ứng) (1)
Mà DC > DE (trong Δ vuông, cạnh huyền lớn hơn cạnh góc vuông) (2)
Từ (1) và (2) ⇒ DF > DE (đpcm).