Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hoàng

Cho tam giác ABC có AB < AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh:

a) Tam giác ABM = tam giác DCM

b) góc BAM > góc CAM

c) AM < (AB + AC + BC) : 2

d) AM < (AB+AC) : 2

Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 20:22

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 20:25

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)


Các câu hỏi tương tự
vinh phạm
Xem chi tiết
Thanh Thủy Vũ
Xem chi tiết
Phamvu
Xem chi tiết
Phạm Thị Hậu
Xem chi tiết
Hai Hien
Xem chi tiết
Pirah
Xem chi tiết
phạm khánh linh
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Mỹ Tâm
Xem chi tiết