Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
cho tam giác ABC có ba góc nhọn đường cao BE . gọi H và K lần lượt là chân các đường vuông góc kẻ từ E đến AB , AC
a, CMR tứ giác BHEK nội tiếp
b, CMR : BH. BA = BK . BC
c, gọi F là chân các đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF . CMR H ,I , K thẳng hàng
Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = D và \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB}.\)
a) Chứng minh ABCD là tứ giác nội tiếp.
b) Xác định tâm của đường tròn đi qua bốn điểm A, B, C, D.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao AM và CN của tam giác ABC cắt nhau tại H. Gọi D và E là giao điểm thứ hai của tia AM và tia CN vs đườg tròn(O).chứng minh: a. Tứ giác BNHM nội tiếp b.BD=BE=BH c.ED//MN
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn<O> b BF,CK là các đường cao của tam giác ABC cắt đường tròn <O> tại D,E chứng minh
a, tứ giác BCKF nội tiếp
b, DE // FK
Cho tam giác ABC. Các đường phân giác trong của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại S. Các đường phân giác ngoài của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại E.
Chứng minh : BSCE là một tứ giác nội tiếp
Cho tam giác cân ABC có đáy BC và \(\widehat{A}=20^0\). Trên nửa mặt phẳng bở AB không chứa điểm C lấy điểm D sao cho DA = DB và \(\widehat{DAB}=40^0\). Gọi E là giao điểm của AB và CD
a) Chứng minh ACBD là tứ giác nội tiếp
b) Tính \(\widehat{AED}\)