Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = D và \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB}.\)
a) Chứng minh ABCD là tứ giác nội tiếp.
b) Xác định tâm của đường tròn đi qua bốn điểm A, B, C, D.
Cho tam giác ABC vuông tại C có ABC = 60° Dựng tam giác cân BEC ra phía ngoài tam giác ABC sao cho BEC = 150°. Gọi D là điểm đối xứng với C qua AB, F là giao điểm của AB và DE, G là giao điểm của AB và CD.
1) Chứng minh tứ giác ABEC nội tiếp.
2) Tính số đo góc BED.
3) Chứng minh hai đường thẳng BC và FG song song.
Cho tam giác ABC có 3 góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ
a) Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L
b) Chứng minh \(\widehat{LBH},\widehat{LIH},\widehat{KIH},\widehat{KCH}\) là bốn góc bằng nhau
Câu 8 (2,5 điểm). Trên đường tròn (O) đường kính AB = 2R lấy di*k_{m}*C sao cho AC = R và lấy điểm D bất kì trên cung nhỏ BC (D khác C và B). Gọi E là giao điểm của AD và BC, H là hình chiếu của E trên AB. a) Chứng minh tứ giác EDBH là tứ giác nội tiếp. b) Chứng minh HE là tia phân giác của góc CHD. c) Xác định vị trí của điểm D để chu vị tử giác ABDC lớn nhất.
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Mn giúp mk với ạ
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Trên tia đối của AB và CA lấy theo thứ tự các điểm M, N sao cho AM = CN. Chứng minh tứ giác AMNO là tứ giác nội tiếp.
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.