tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh1) tứ giác AMBD nội tiếp2) Ba điểm M,Q,E thẳng hàng
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
a.cm tứ giác EMNF nội tiếp
b.cm DM.DE=DN.DF
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R). Điểm M di động trên đường tròn (O;R). Gọi D và E lần lượt là hình chiếu của điểm M lên các đường thẳng AB và AC. CMR: ΔMBC∼ΔMDE
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định
Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O;R). Điểm M di động trên đường tròn (O;R). Gọi D và E lần lượt là hình chiếu của điểm M lên các đường thẳng AB và AC. CMR: \(\Delta MBC\sim\Delta MDE\)