+ \(\left\{{}\begin{matrix}S_{ABC}=\frac{1}{2}\cdot AI\cdot BC\\S_{BHC}=\frac{1}{2}\cdot HI\cdot BC\end{matrix}\right.\)
( với \(S_{ABC},S_{BHI}\) lần lượt là diện tích ΔABC, ΔBHI )
\(\Rightarrow\frac{S_{BHI}}{S_{ABC}}=\frac{\frac{1}{2}\cdot HI\cdot BC}{\frac{1}{2}\cdot AI\cdot BC}=\frac{HI}{AI}\)
+ Tương tự ta cm đc :
\(\frac{HD}{BD}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HE}{CE}=\frac{S_{AHB}}{S_{ABC}}\)
Do đó : \(\frac{HI}{AI}+\frac{HD}{BD}+\frac{HE}{CE}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}\)
\(=\frac{S_{ABC}}{S_{ABC}}=1\)