Cho tam giác ABC cân tại A(\(\widehat{A}\)<90 độ) ,vẽ BD\(\perp\)AC và CE\(\perp\)AB.Gọi H là giao điểm của BD và CE
a)Chứng minh:\(\Delta ABD=\Delta ACE\),\(\Delta AED\) cân
b)Chứng minh:AH là trung trực của ED
c)Trên tia đối của tia DB lấy điểm K sao cho DK=DB.Chứng minh:\(\widehat{ECB}=\widehat{DKC}\)
a)
Xét 2 tam giác vuông ABD và tam giác ACE ta có
AB=AC ( do tam giác ABC là tam giác cân)
Góc A là góc chung
vậy tam giác ABD = tam giác ACE (ch-gn)
Ta có tam giác ABD =tam giác ACE ( chứng minh trên )
từ đó suy ra AD=AE
Nên suy ra tam giác AED là tam giác cân tại A
b)
gọi I là giao điểm của AH và ED
Xét 2 tam giác vuông AEH và tam giác ADH ta có
AE=AD ( chứng minh ở câu a)
góc D = gócE=90*
AH là cạnh chung
do đo tam giác AED = ADH ( c-g-c)
suy ra góc EAH=góc DAH ( do 2 góc tương ứng )
EH =HD ( do hai cạnh tương ứng )
suy ra H là trung điểm của ED (1)
Xét tam giác AEI và tam giác ADI ta có
AE=AD ( chứng minh câu a )
góc EAH=DAH (chứng minh trên )
AI là cạnh chung
Do đó tam giác AEI =tam giác ADI (c-g-c)
suy ra gócEIA= gócAID ( Do 2 góc tương ứng )
mà góc EIA +góc AID =180
Nên góc EIA=AID=90* (2)
tTừ (1) và ( 2) suy ra
AH là trung đểm của ED
CÒN CÂU C MÌNH LÀM SAU