a: XétΔADE có BA/BD=AC/CE
nên CB//DE
b: Xét ΔDBM vuong tại D và ΔECN vuông tại N có
DB=EC
góc DBM=góc ECN
Do đó: ΔDBM=ΔECN
Suy ra: DM=EN
c: Xét ΔAMB và ΔANC có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
hay ΔAMN cân tại A
a: XétΔADE có BA/BD=AC/CE
nên CB//DE
b: Xét ΔDBM vuong tại D và ΔECN vuông tại N có
DB=EC
góc DBM=góc ECN
Do đó: ΔDBM=ΔECN
Suy ra: DM=EN
c: Xét ΔAMB và ΔANC có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
hay ΔAMN cân tại A
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
cho tam giác ABC cân tại A.trên tia đối BA,CA lấy 2 điểm D và E sao choBD=CE.CMR:
a/DE song song vs BC
b/Từ D kẻ DM vuông góc BC,E kẻ EN vuông với BC.cmr:DM=EN
cho tam giác cân ABC có AB=AC. trên tia đối của tia BA lấy điểm D, tia CA lấy điểm E sao cho BD=CE.
a. CM: DE song song với BC
b. Từ D kẻ DM⊥BC, từ E kẻ EN⊥BC. CM: DM=EN
c. Chứng minh △AMN là tam giác cân
d. Từ B và C kẻ các đường vuông góc với AM và AN và chúng cắt nhau tại I. CMR: AI là tia phân giác chung của 2 góc BAC và góc MAC
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf
Tam giác ABC vuông tại A, có góc B=60 độ. Tia phân giác của góc B cắt AC ở D. Từ D kẻ DE vuông góc với BC tại E
a) chứng minh rằng: BA=BE
b) tính số đo góc EDC
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP