Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD = AE
a) C/m rằng BE = CD
b) C/M : góc ABE = góc ACD
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
d) Ba đường thẳng AC, BD, KE cùng đi qua một điểm
Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM
cho tam giác abc cân tại a lấy d thuộc ac điểm e thuộc cạnh ab sao cho ad =ae
a,So sánh góc abd và ace
b,Gọi i là giao điểm của bd và ce .Chứng minh id = ie
Cho tam giác ABC vuông tại A có góc ACB = 30o. Tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh : ME vuông góc với BC
b) Tam giác AEB và AEC là tam giác gì? Vì sao?
c) Kẻ CH vuông góc với BM. CH cắt AB tại F. Chứng minh 3 điểm E, M, F thẳng hàng
Cho tam giác ABC vuông tại A có ab=8cm ac=6cm a)Tính BC b)Trên cạnh AC lấy điểm E sao cho trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chúng minh tam giác BEC=tam giac DEC c)Chứng minh tam giác BCD là tam giác cân và xác định trọng tâm của tam giác BCD
cảm ơn mn giải giúp mik :333
cho tam giác ABC có góc A là góc vuông. Trên tia đối tia AB lấy điểm D sao cho AB = AD. Trên tia đối tia AC lấy điếm E sao cho AC = AE. Lấy điểm I là trung điểm của DC. Chứng minh BE = 2AI
Cho tam giác ABC( AB> AC ), M là trung điểm của BC. AD là phân giác góc BAC ( D thuộc BC). Trên tia đối MA lấy E sao cho MA= ME
a) BE= AC
b) Góc AEB > góc BAE
c) AB + CD> AC +BD
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D , trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD
Chứng minh:
a)BE = CD b)Tam giác BMD = Tam giác CME
c) AM là tia phân giác của góc BAC
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD