a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
cho tam giác ABC có góc A là góc vuông. Trên tia đối tia AB lấy điểm D sao cho AB = AD. Trên tia đối tia AC lấy điếm E sao cho AC = AE. Lấy điểm I là trung điểm của DC. Chứng minh BE = 2AI
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM