Bài 3: Cho tam giác ABC cân tại A. Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB.
a) Gọi N à trung điểm của BD. Chứng minh rằng HN //DC.
b) Chứng minh rằng: AD=\(\dfrac{1}{3}\)AB
Bài 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB
a)Gọi N là trung điểm của BD. Chứng minh rằng: HN // DC
b)Chứng minh rằng AD =1/3 AB
cho tam giác ABC bất kì , có H là trung điểm của BC , gọi M là trung điểm của AH . D là giao điểm của CM và AB gọi N là trung điểm của BD
a, CM : ND = DA => AD =1/3 AB
cho tam giác abc cân tại a m là trung điiểm của đường cao ah. d là giapo điểm của CM và ab. qua m kẻ dường thẳng song song với bd cắt ac ở e.
a) gọi n là trung điểm bd. chứng minh hn song song với dc
b) ad = 1/3 ba
Bài 4: Cho tam giác ABC. Gọi H là trung điểm của cạnh BC, M là trung điểm của AH và D là giao điểm của CM và AB. Chứng minh rằng: BD =2AD
Bài 2: Cho tam giác ABC. Gọi H là trung điểm của cạnh BC, M là trung điểm của AH, D là giao điểm của CM và AB. Chứng minh rằng BD = 2AD
Cho tam giác ABC ( AB< AC). Trên AB lấy M, AC lấy N sao cho BM=CN. Gọi E là trung điểm của MN, F là trung điểm của BC, I là trung điểm BN.
a) CM tam giác IEF cân
b) Đường thẳng EF cắt AB, AC tại G và H. CM AG=AH
Bài 4 (3,0 điểm) Cho ∆ABC cân tại A. Gọi M và N lần lượt là trung điểm của cạnh AB và cạnh AC.
1) Chứng minh BC = 2MN.
2) Chứng minh tứ giác MNCB là hình thang cân.
3) Gọi I, K lần lượt là trung điểm của MN và BC. O là giao điểm của MC và NB. Chứng minh: A, I, O, K thẳng hàng.
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.