Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b)Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b) Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Cho tam giác ABC ( AB< AC). Trên AB lấy M, AC lấy N sao cho BM=CN. Gọi E là trung điểm của MN, F là trung điểm của BC, I là trung điểm BN.
a) CM tam giác IEF cân
b) Đường thẳng EF cắt AB, AC tại G và H. CM AG=AH
Cho tam giác ABC có trung tuyến AM (M thuộc BC). Trên cạnh AB, AC lần lượt lấy hai điểm D, E sao cho AD = DE = EB. Gọi I là giao điểm của AM và CD. Chứng minh AI = IM.
Cho tam giác ABC cân tại A có M, N lần lượt là trung điểm của AB, BC. Qua N kẻ đường thẳng song song với AB và cắt AC tại K. a) Chứng minh NK = 1/2 AB b) Chứng minh tam giác MNK cân tại N
Bài 4: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 5: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 6: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.
Bài 1: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 2: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 3: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.
1. Cho tam giác ABC, các đường trung tuyến BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE song song và bằng IK. 2. Cho cho tam giác ABC, đường trung tuyến AM. Lấy điểm D thuộc AC sao cho DC = 2AD, gọi I là giao điểm của BD và AM. Chứng minh rằng AI = MI. 3.ChotamgiácABCvuôngtạiB,Â=600, phângiácAD.GọiM,N,Itheothứtựlà trung điểm của AD, AC, CD. a. Chứng minh rằng BMNI là hình thang cân. b. Tính các góc của tứ giác BMNI.
Bài 4. Cho tam giác ABC, trên cạnh AC lấy các điểm D và E sao cho AD=DE = EC. Gọi M là trung điểm của BC , BD cắt AM tại I
a) Chứng minh ME // BD
b) Chứng minh I là trung điểm của AM
c) Chứng minh ID = 1/4 BD