Em kiểm tra lại đề bài, tam giác ABC cân tại A hay vuông tại A?
Vì nếu cân tại A thì BH=CH, nhưng đề lại cho BH=2, CH=8 vô lý
Em kiểm tra lại đề bài, tam giác ABC cân tại A hay vuông tại A?
Vì nếu cân tại A thì BH=CH, nhưng đề lại cho BH=2, CH=8 vô lý
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. a) Viết tỉ số lượng giác góc B của AABC. b) Cho AB=6cm, AC = 8cm . Tính BC,AH c ) Chứng minh: AE.AB = AF AC
Cho △ ABC nhọn có đường cao AH. Gọi M, N lần lượt là hình chiếu H trên AB và AC.
a) tính độ dài đoạn thẳng AB, AH và số đô BAH biết AM = 12cm, BH = 9cm.
b) Chứng minh △ AMN ∼ △ ABC
c)Chứng minh AH=\(\dfrac{BC}{\cot B+\cot C}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=8cm, BH=2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH b) Trên cạnh AC lấy điểm K (K khác A, K khác C), gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC từ đó suy ra AB = BC. sin góc BDH
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC
a, Cho AB=9, BH=5.4. Tính AC,BC,AH,EF ( đã làm được)
b, Chứng minh \(\dfrac{1}{EF^2}\)=\(\dfrac{1}{AB^2}\)+\(\dfrac{1}{AC^2}\)(đã làm được)
c, Chứng minh EA.EB+FA.FC=HB.HC( cần trợ giúp)
Bài 8: Cho ΔABC vuông tại A có AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh: AEHF là hình chữ nhật và AE.AB =AF.AC
b) Chứng minh: \(AB^2-AC^2=BH^2-CH^2\)
c) Chứng minh: \(\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Chứng minh: \(AH^3=BC.BE.CF\)
e) Chứng minh: \(BH.CH=AE.BE+AF.CF\)
f) Chứng minh: \(BC^2=3AH^2+BE^2+CF^2\)
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
cho tam giác ABC nhọn có đường cao AH gọi E,F lần lượt là hình chiếu của H trên AB và AC. Cho góc C=30°,AC=8cm tính độ dài AH,HC. chứng minh AE.AB=AF.AC từ đó suy ra góc AEF = góc ACB gọi I là giao điểm của AB và FH, K là giao điểm của AC và EH chứng minh IH.IF+KH.KE=IK^2
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!