Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a) Chứng minh: tam giác AMN cân
b) Kẻ BE vuông góc với AM; CF vuông góc với AN. Chứng minh: tam giác BME = tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh: AO là tia phân giác của góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM
Qua N kẻ đường thẳng vuông góc với AN
Chúng cắt nhau tại H. Chứng minh: ba điểm A, O, H thẳng hàng
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC cân tại A ( AB>BC ).Trên tia đối của tia CA lấy điểm D sao cho CD=CA. Kẻ AH vuông góc BC tại H, kẻ DK vuông góc với đường thẳng BC tại K. Chứng minh : a) Tam giác AHC=tam giác DKC b)KC=1/2 BC c)Trên tia đối của tia BC lấy điểm M và trên tia CD lấy điểm N sao cho BM=CN=AB-BC, CHo biết ^BAC=40độ. Tính ^ANM
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )