a) Trong các điểm A, B, C, D, E, F, H, ta có các nhóm 4 điểm cùng nằm trên đường thẳng như sau:
Nhóm 4 điểm A, D, F, H.Nhóm 4 điểm B, D, E, F.Nhóm 4 điểm C, D, E, F.b) Gọi M là trung điểm AC và N là trung điểm HB. Ta cần kiểm tra xem 4 điểm M, N, F, D có cùng nằm trên đường thẳng không. Để kiểm tra điều này, ta cần xem xét xem đường thẳng MN có đi qua điểm F hay không. Nếu đường thẳng MN đi qua điểm F, tức là MN là đường cao của tam giác ABC, và 4 điểm M, N, F, D sẽ cùng nằm trên đường thẳng. Ngược lại, nếu đường thẳng MN không đi qua điểm F, tức là MN không là đường cao của tam giác ABC, và 4 điểm M, N, F, D sẽ không cùng nằm trên đường thẳng.
Vì tam giác ABC là tam giác cân tại A, nên đường cao AD cũng là đường trung tuyến của tam giác ABC. Do đó, ta có AM = MD. Tương tự, ta có BN = ND. Vì vậy, ta có thể kết luận rằng 4 điểm M, N, F, D cùng nằm trên đường thẳng.