a: Xét ΔABC có
BD là đường cao
EC là đường cao
BD cắt EC tại I
Do đó: I là trực tâm
=>AI vuông góc với BC
mà ΔABC cân tại A
nên M là trung điểm của BC
b: Xét ΔEBM và ΔDCM có
EB=DC
góc EBM=góc DCM
BM=CM
Do đó: ΔEBM=ΔDCM
Suy ra: ME=MD
a: Xét ΔABC có
BD là đường cao
EC là đường cao
BD cắt EC tại I
Do đó: I là trực tâm
=>AI vuông góc với BC
mà ΔABC cân tại A
nên M là trung điểm của BC
b: Xét ΔEBM và ΔDCM có
EB=DC
góc EBM=góc DCM
BM=CM
Do đó: ΔEBM=ΔDCM
Suy ra: ME=MD
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
Cho tam giác ABC có AB= AC 2 đường cao BD và CE cắt nhau ở I . Tia AI cắt BC ở M
a) Chứng minh rằng : M là trung điểm của BC
b) Chứng minh rằng : BD = CE
c) Chứng ming rằng : BE = CD
Giúp mình nha vẽ hình hộ mình luôn nha ^_^
Cho tam giác ABC có góc A = 600, kẻ tia phân giác của góc B cắt AC ở D, tia phân giác góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại E. a. Chứng minh rằng góc AFC = CAF b. Chứng minh rằng góc BDC = AEC
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
cho tam giác ABC cân tại A(AB>BC),đường trung trực của AC cắt BC tại M,trên tia đối AM lấy điểm N sao cho AN=BM.Kẻ CI vuông góc với MN tại I.Chứng minh rằng I là trung điểm MN. Giúp e nha mn(e đang cần gấp!!!)